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regression estimator is also more efficient than the ratio estimator.
If p is near -1, the product estimator should be considered.

The use of auxiliary information in the estimator must be in the
form of quantitive variables. In addition, it must be available for
the total of all units in the population prior to the data collection
phase unless double sampling is being employed.

6.8.2 Choice of Stratification Criterion

Information useful for formation of strata is generally of two
kinds; tnat which is based on

(1) the arrangement of the elements in the universe such as a

listing structure, or

(2) some knowledge about individual elements, such as on a variate

Xi related to Yi'

In many types of listings, the principle of proximity in grouping
units to attain a lower within strata variance is useful based on
geographical areas such as by county, city, or minor civil division
which correspond to pelitical subdivisions. However, subdivisions
shown on maps which corrcspond to major soil types, medical areas,
soclo~-econonic class, or value of housing are examples of types of
information which may also be useful in forming strata.

For the second type of information, a universe of homes may have
data available on assessed value of individual homes and buildings as
well as for entire political units. For universes of business establish-
ments, dollar volume of business in the previous yecar may be available
as well as type of business, number of employees, and various kinds of
other information. This later type of information may be either
quantitative or categorical in nature.

In nany practical situations, the statistician is confronted with
several potential stratification "factors." Frequently, geographic
location and size of business, based on volume of sales and number of
employees, are available for forming strata. Sometimes the number of
potential strata becomes so large, it is necessary to drastically reduce
either the number of stratification factors or the number of levels, or
both. In this case some rough and simple rules for deciding on prefer-

ence may be useful.
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(1) In general, qualitative and non-measurable characteristics
should be preferred over quantitative characteristics for use
in stratification. Qualitative information is difficult to
use anywhere except in stratification whereas quantitative
data may be more fully utilized in the estimator or in
selection probabilities.

(2) If the quantitative information is not related to Yi in a
simple manner (say linear) then it may be better to utilize
it in stratification rather than in the estimator or selection
probabilities.

(3) If more than one characteristic is being surveyed and each is
roughly of equal importance, then it is better to forego use
of quantitative information thought to be correlated with
one or only a few of the characteristics under measurement
in either the estimator or selection phase and use it in
stratification.

6.8.3 Use in Acsigning Selection Probabilities

Equal probability schemes are quite popular and applicable to a
wide range of problems because of their basic simplicity. However,
the use of unequal probatilities in selection can result in a con-
siderable increase in efficieney. It will be found that the variance
is a mininum when P, = YilY. That is, when the probabilities of

selection are proportional to values being observed. This is an
interesting fact, but difficult to apply in practice since the Yi's

are unknown, otherwise we would not need the survey. For a survey with
many characteristics, this condition cannot be satisfied for all

characteristics since P, will be determined based on a single set of

i
Xi representing some measure of size for the sampling unit; that is
x1 :
P1 "3 where Xi is correlated with Yi. However, two types of size

measures have proved to be useful over rather general conditions. The
first is the use of information on the Y characteristic for a previous
point in time, such as censuses, as a measure of size of the current .
Y's. The sccond depends on the existence of sub-elements, such as

number of farms, housing units, etc., within the units to be selected.
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If such information does not exist on the number of subunits, it is

frequently possible to substitute '"eyeball estimates" or cruise counts
which are current and correlated with the Y's. Of course, the same
information might be employed in an alternate way by forming clusters
of units of approximately equal size. The use of the information in
this manner is perhaps more properly referred to as frame construction
or modification.
Periodic Surveys (Sampling Over Several Occasions)

Many surveys are made periodically of the same population to

measure change in the same characteristic over time or to estimate the

average characteristic over the combined periods. In some cases, this
information might be obtained in a single survey by requesting respond-
ents to provide information for two or more periods. While a single
survey would be less expensive in terms of dollars spent, many respond-
ents are unable to provide accurate information for several periods of
time either due to problems of memory recall or records are not retained
so they can be referred to where necessary. Howvever, periocdic surveys
provide opportunities to make use of experience gained from earlier
surveys to change the sample allocation and make other improvements in
the survey over time. Repetitive surveys basically employ auxiliary
data and double sampling concepts. Two types of problems are of special
interest in periodic surveys:

(1) Choosing the appropriate estimator(s) to use since repeated
information on the same characteristic(s) 1s usually avail-
a%le for some or all of the same sampling units, and

(2) Whether to replace all or a part of the initial sample
selected to represent the population for subsequent surveys,

6.9.1 Replacement of Sampling Units
(1) Fixed Sampling Units (Panel Method)

If the main emphasis in the surveys 1is to estimate change
over time (i.e., trends), it is best to use a fixed sample since
there will generally be a high positive correlation between
observations on the same saﬁpling unit on successive occasions.
If there is no correlation over time, then at least partial

replacement of sampling units is preferred.
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In using a fixed sample, there are disadvantages which
develop after several periods due to non-sampling error problems
which arise because of: (a) respondent fatigue due to repeated
requests for information resulting in some sampling units not
cooperating and the sample becoming unrepresentative, (b) sam-
pling units may be changed by repeated requests for survey
information. That is, the respondents may decide they know
what information is wanted, and provide data which is different
than that being requested; or, the sampling units may change
their character because they are being "observed" or become
"conscious of their practices” if they are required to partici-
pate for too many surveys.

However, there are certain cost advantages which result on
the second and subsequent visits due to knowing the location of
the sampling units and when to find the respondents at home.

(2) Complete Replacement

This implies an independently selected sample of units on
each survey occasion. The correlations for characteristics over
time are expected to be low between the observation on the same
units on successive occasions because the data relate to different
time periods.

In using independent samples, we are generally interested in
combining of the characteristic(s) over two or more successive
periods. That is, the first survey might conceivably obtain infor-
mation on the first planting of a crop while the second survey
would obtain data relating to a second planting of the crop where
under favorable climatic conditions there are two (or more)
distinct crop plantings and harvests during a 12-month period.
The two surveys would be designed to measure the total production
for the entire year.

The disadvantages over time of a fixed sample in terms of
non-sampling errors which are related to the respondent are
eliminated by the selection of an independent sample each time.
However, the costs are also greater when using complete replace-
ments of sampling units due to (a) selection of new units, and

(b) locating and enumerating of new units for the first time.
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(3) Partial Replacement

Part of the sample is retained, and remainder is replaced
for each survey. This type of periodic survey has the advantages
of the fixed sample for measuring change and those of the com-
pletely replaced sample in estimating the mean relating to the
current or most recent survey. If costs of replacement are
ignored, the extent of replacement is dependent on the correla-
tion between successive surveys for the same characteristic since
the variance is not expected to change. If p = .5 or larger for a
characteristic, than less than 50 percent should be retained where
the best estimate is desired for the current survey. Since most
surveys have many content items, an iterative or trial-error solu-
tion must be sought to optimize the fraction retained for all con-
tent items in the survey. However, the fraction retained typically
varies between one-fourth to one-half of the previous survey.

6.9.2 Some Useful Estimators for Means (or Totals)

The estimator considered will depend on whether the main purpose
is to (a) estimate the change over the time period between surveys, or
(b) estimate a combined total or mean for several time periods covered
in the sarveys, or (c) make the best possible estimate for the last or
current survey. These estimation problems will be discussed in terms
of two periodic surveys wvhere the two successive surveys being con-
sidered might be 6, 12 or 24 rmonths apart and relate to reported data
for a similar period of time.

(1) Best Linear Unbiased Current Estimator

A random subsample m = n) units is retained for use on the
second occasion and with another independent random sample

£ = n-m = np which is not match with the units in the first survey.

A and v are the fractions retaired and replaced, respectively.

Consequently, we have two independent estimates of the current

mean (i.e., second survey). The first estimate, ;d' is based on

the difference estimator and Ye is the simple mean of the new
units. In general, the variate of interest will be assumed to
have the same variance on both occasions for simplicity though

this is not necessary. The variances of the two means are:
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2
VG =3 1+ A-)(1-2))  and

2
V(;L) = %; , where 92 is the "pooled" variance from the

two surveys.
By weighting the two estimates inversely to their variances, we

obtain ;n and its variance is:

2
VG =S [+ aezemlln + a-200m%17t

which is minimized by taking derivative with respect to u and

solving the resulting equation set equal to zero; that is:

2
= ———/—1-_-—— for which vMin(;n) = -:— (%— + l:z_‘l ) .
1+ v2 vl-p

For making current estimates, it is best to replace the sample

partially and use the difference estimator if p > %-.

However, there exists a minimum-variance unbiased estimator
for large populations which can be derived based on general esti-
mation theory in terms of the means for the match and unmatched
portions of the sample. This estimator for a characteristic

appearing in both surveys can be shown to be

- - = - 2 .-
y = ——1-2—-5 Due(X,-X,) + Ay, + u(l-p"W)y,]

l-p'y
- 1-p™y 02 2
and V(y) = 53 a (o™ is assumed constant between surveys)
l-p™u

where:

X1 = mean of units appearing only in first survey
(unmatched units)

iz = mean of units appearing in first survey which can be
matched on second survey (matched units)

y, = mean of units appearing only in second survey
(unmatched units)

y, = mean of units appearing in second survey which can be

matched with first survey (matched units)
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(2) Estimation of Change
If the interest centers on estimating the rate of change in
the mean value (or estimated total), we consider the estimator

based on the mean on each occasion.

R=2X"% and the approximate variance is

v(ﬁ) = (V(y) + (1+R)2vc§) ~2(1+R) E-Cov(§,§)} s %2,

If we are interested in an unbiased estimate of the absolute
change, we estimate (or revise) the characteristic for the first
occasion based on the means (or estimated totals), ix, based on
the difference estimator for the matched portion and Xu for the
unmatched portion using the minimum-variance estimator discussed
above.

x = —do A5, + 2%, + u-o%w) X1

l-pu

Or, the difference D between surveys is

- - 1 - - - -
and
< 2(1-p) 2 2
V(D) n(1=up) 0° (0" is assumed constant between surveys)

(3) Estimation of the Combined Mean (Or Estimated Total) for
Two Periods
The minimum-variance estimator for the sum of the two

occasions is

- = 1 - - - -
S=x+y = 1ou [u(14p) (v +%,) + Ay, +x,)]
and
2
V(S) = 2(1+p)o” (o2 is assumed constant between surveys)

n(l+up)
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Chapter VII. Use of Several Frames in Sampling

Introduction
In this chapter, we introduce a general methodology for "multiple

' The need for several frames arises because: (1) the

frame surveys.'
individual frames do not completely cover all the units in the population
but collectively the frames do include all the population units of
interest, or (2) even though all the units in the population of interest
are covered by a single frame, the use of several frames leads to smaller
expected sampling errors per dollar spent. In either case, the use of
several frames results in some units being included in more than one
frame. For these subdivisions or domains of the population, two or more
estimators of the same parameter are available. The material covered in
this chapter deals with the general theory of utilizing any rumber of
frarmes with and without prior knowledge as to the extent of their rutual
overlap. The technique of domain estimaticn described in Section 5.7 is
enployed. The "overlap domain(s)" provide estimates of the same para-
meter which arise from each frame; consequently, it is necessary to test
the reasonableness of the assumption that the sample estimates of the
parameter have the same value before "pooling" the estimates. In the
event the assumption of equality of the parameter is rejected, the
sarnple data does not suggest which frame should be used to obtain the
estimate of the parameter. This decision must be based on other statis-
tical considerations.

Aside from the theoretical considerations of sampling, multiple
frame surveys are more difficult to execute operationally and require
more controls to avoid non-sampling errors becoming an important source
in sample surveys. This is a direct result of each frame consisting of
different types of listing units. In addition, the sampling units in
each frame may differ even though both frames contain the same elementary
units. Alternatively, the elementary units thcnselves may differ from
one frame to another. Thus, operationally the survey may include two
frames with different types of listing units, two different types of
sampling units, two different types of elementary units, two different
procedures for associating the population of interest with the sampling
units, and the necessity of identifying all units or multiples of units

which are in two or more frames in the cariple.
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7.1 Two Frame Surveys

The technique to be employed is that of domain estimation which
was discussed in Section 5.7. One of the first published results in the
agricultural field was a 1956 poultrv study conducted in Maryland. One
frame was the area frame consisting of sesments of land with which
operators of layer flocks were associated and the second frame consisted
of a 1list of operators with 3000 ldvers or more whose eggs had been
graded. This was a two frame survey in which the area sample contained
all operators of flocks residing in Maryland (1.e., 100 percent coverage)
and the list consisted of all prior known operators residing in Maryland
with 3000 layers or more. In other fields of application, the avail-
ability of a complete frame may occur less frequently.

7.1.1 Two Frame llethodologv

Consider two frames A and B and assume that 2 sample has been drawn
from each frame. The samples mav be entirely different in the two frames
but the following assumptions are nade:

(1) Every unit in the population of interest belongs to at least

one of the frames.

(2) It is possible to record for each sampled unit in each frame

whether or not it belongs to the other frame.

This means we can divide the units of the sample into three (22 -1)
domains.

Domain (a) The unit belongs to Frame A only

Domain (b) The unit belongs to Frame B only

Domain (ab) The unit belongs to both frames
The units in the population are also conceptually divided into the above
domains.

7.1.2 HNotation for Two-Frame Surveys

There are four different situations concerning our state of knowledge
of the total number of units in the frame and in the domains and of our
ability to allocate prescribed sample sizes to the domains. We consider
only cases 1, 2, and 3 in the discussion. 1In Case 4, the sample sizes
are random variable since the number of units in the frames are unknown.
Unless othervise stated, the type of elementary unit is the same in both

frames.
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Table 1 Notation

Frame f Domain
A B ; a b ab

Population number NA NB ; Na Nb Nab
Sample size n, ng % n, n, LIRS & na
Population total YA YB E Ya Yb Yab
Population mean ?A ?B E Ya ?b §ab
Sample total Ya Y % Ya Yy Yab & Yba
Sample mean ;A ;B E ;a ;b ;ab & §ba
Cost of sampling unit CA CB %

Random samples are drawn from each frame and n_ ., and n, , are the subsamples

ab

of n, and ny respectively which fall into the overlap domain ab where the

first letter a or b indicates the frame from which the sample was drawn.

The means ;ab and ;ba can be computed only if nab>0 and nba>0'

Table 2 Four Cases of Prior Knowledge
tKnowledge of population:Possibility of fixed sample:Nature of
Case:numbers in domains and :allolations to domains and :Domains

:frames sframes :
sN,,N_,N ,N ,N known :It is feasible to allocate :Domains
1 A’ B’ a’b’ ab -
$ tsample sizes to domains :Z Strata
tN,,No,N ,N ,N . known :It is not feasible to allo-:Domains Z
2 A*B’ a’ b’ ab
: :cate sample sizes to domaimspost-strata
:Only N, and N_ known :Sample sizes can only be :Domains £
3 A B
: tallocated to frames :domains proper
tNeither domain sizes :Sanmpling rates only can be :Domains =
tnor frame sizes known :allocated to frames tdomains in
4 : :populations
: H :of unknown
: H tsizes

7.1.3 Estimation of Population Totals and Means

In Case 1 the estimation problem is reduced to the standard method-
ology for stratified sampling covered in Chapter V. For Cases 2 and 3.
two approaches leading to identical formula are possible: (a) the theory
of domain estimation, or (b) the method of weight variables. For (b)

we introduce the following attributes to units in the two frames:



y, 1f £ unit 1s in domain a
Frame A yy " th .
c ¥y 1if 1~ unit is in domain ab

Yy if 1th unit is in domain b

Frame B y{ -
h

diyi if 1t unit is in dcmain ab

vhere g and d1 are numbers which satisfy for each unit in domain adb
E(ci+di) = 1. Therefore, the two frames are to be converted into two

mutually exclusive strata of sizes Na and Nab for Frame A and Nb and

Nab for Frame B. That is, we have duplicated the Nab units in both

frames. The population total will be equivalent to the single frame
total of Y. However, the sample estimator of the total and the variance
are easily derived only if ¢

i
and di = q where p + ¢ = 1 and are determined independently of the

and di are constants. That is, c, =P

parameter being estimated for unblasedness. Clearly, the population
total is equivalent to the original population total since the N =

Na + Nab + Nb units are now Na + ZNab + Nb and the totals are:

+ Y

Y = Ya + Yab b

Y* = Ya + pYab + qYab + Yb where there are two independent estimators

of Yab which are combined. This notation can be translated directly into

that of Section 5.7 by letting y{ S jyi and the count variable being ju1
where j correspond to the two strata in each frame.

The standard methodology applicable to the survey designs in Frame A
and Frame B are therefore applicable to obtain estimates of the two
stratum totals for the variate y; » thelr variances and variance estimates.
Adding the totals for both frames, we obtain the total for the population
of interest. To obtain estimates of the population mean Y = Y/N apply

these formulas to the count variable ui (or jui) to estimate its total N
in the way Y° was estimated.
The estimate of the population total given by Hartley for a char-

acteristic when Na, N, and Na are known is:

b b

+ beb .

Y= Naya + Nabpyab + Nabqyba
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This estimator is in the form of a post -stratified sampling estimator.
1f the sample is sufficliently large and the f.p.c. factor is not

important, the variance is given by

Nz N2
2 2 B 2 2 2
V(Y) n, {oa Na oab Nab P+ ng {ob Nb + cab Nab q”)

where oi, °§ and Oib are the within post stratum variances.

When Na’ Nb, and N are unknown, an estimator given by Lund based

ab
on the actual subdivisions nab and noa is:
- N N N N
A - A B -
Y=—mny +[—n, p+t_— ql ¥, + 5oy
nA a’a n, ab nba nB nb b
where - +
ab "ha yba

Yap = T . The approximate variance where a = Nab/NA
"ab T "ba
and B = Nab/NB is:

2 2
- N N,N N
V) =2 (1-ael+ 2B o2 4+ Byl
nA a anAanB ab nB
N1 - e _ ) Ng(l -88 _ -,
nA [Y - PY b] nB [Yb = qYab]

An alternative approach proposed by Fuller and Burmeister uses a
multiple regression type estimator for samples selected from fwo over-
lapping frames. It is assumed that the sampling is such that unbiased
estimators of the item totals and the total number of units in each
domain are available as well as the same observational unit being used
in each frame. The estimator suggested for the population total of the
qontent item is as follows.

Y = Y + Y + B (N ) + BZ(Y Yba) where YB = Yb + Yba .

When Frame B is complete and Frame A incomplete, we do not have domain
a, hence the estlmator is

Y = YB + B (N ) + B (Y

ab—Yba)
wvhere

-~

Y. = an unbiased estimator of the total constructed from the
sample in Frame B,

~

Yabn an unbiased estimator of the total of domain "ab"
constructed from the sample of Frame A,
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Yba = an unbiased estimator of the total of domain "ab"
constructed from the sample of Frame B,
Nab = an unbiased estimator of the number of observational units

in domain "ab" constructed from the sample of Frame A,

Nba = an unbiased estimator of the number of observational units
in domain "ab'" constructed from the sarple of Frame B, and

-~

Nb = an unbiased estimator of the number of observational units
in domain "b" constructed from Frame B.

The optimal values of Bl and 82 are pgiven by

Bl V(Nab—Nba) Cov(Nab-Nba,Yab-Yba) -Cov(Ya,Nab)+Cov(Yb,Jba)
B Cov(Nab—Nba,Yab-Yba) V(Yab—Yba) -Cov(Ya,Yab)+Cov(Yb,Yba)

A consistent estimator of the variance is

V(Y) = V(Ya) + V(Yb) + Bl[Cov(Ya,Nab) - Cov(Yb,hba)]
+ Bz[Cov(Ya,Yab) - Cov(Yb,Yba)] .
It is also suggested that if other y characteristics are observed in
the survey, it may be possible to further decrease the variance of the
estimator by including other unbiased estimators of zero in the regres-

siop type equation.
7.1.4 Determination of Fixed Weights (p and q)

The value of p is to be determined independently of the paraneter

being estimated, Y or Y. If the sample sizes n, and n, are determined,
n !
the value of p might be determined as: . However, it is possible
n,+n
A B
to contemplate finding the values of n,ys Ny and p that will give a mini-~

mum value for the variance whenever the cost is fixed or vice versa.
Assuming a simple cost function C = CAnA + CBnB where C 1s the total cost
of sampling, CA is the cost of an observation from Frame A and CB is the
cost of an observation from Frame B. After some labor, the optimum value

of p was found by Hartley to be one of the solutions of:
2 2 2 2
pol[@y(l-8) +8q"] =q" [8,(1 -a)+ap’]

wvhere



7-7

2 2 .
p.fé b =k g . Cla agﬁimme.i&
] » > 9 e
CB B °:b A oab NA NB

Once the value of p has been determined, the values of n, and n_ can

B
be found from

1
n —
A, 2, _ 2 2 2
NA €] {(°a<l a) + ap oab)/CA}
a 1
B

2 22 2
R, 70 (0,1 - &) + Baoy,) /cy)

where © would be determined by the budget available. The foregoing
derivation requires knowledge of the costs, variances, and population

domain sizes Na’ Nb’ and Na An alternate derivation for p due to Lund,

b‘
when Nab is known, is given by the simpler solution for p by the expression

an
A
Py = E;;IE;; . While n, and ngp can be expressed by the iterative system
8,2 2, .22
[ - / ;E (%) and fi+1‘ ;E(géz (r1+§)2(l-a)°;+récgb  uhere © = ;— ‘
A A (x4 (1-BYo + () “Bogy B

Thus, the optimum value for p 1s the ratio of the expected value of the
"overlap domain" size in Frame A with respect to the sum of the expected
values of the "overlap domain" in both frames.

When Na’ Nb and Nab are unknown, it is necessary to insert unbiased
estimates of these three parameters. The minimization of the variance

expression in the middle of Page 5 as a function of p, n, and ng subject

A
to the cost equation specifies

N,(1-a) _ Ng(1-8) _
Y + (Y .-Y,)
nA a nB ab b
Po = N (1-a) N.(1-8) )
A B S
[ n + n ] Yab
A B

The sample allocation among the two frames can be expressed by an iterative

systenm



r - -(i (.@.
1 CA a
2 2 S .3 o5 .2
1%%) ’1“‘1'“)(Y +Yb°Y ab)
(1-a)o + 8.2 +
2 . E(B)2 et o (x 1+ el
+
Gy &)?po? Ed=$1%001-8) (T +43,-F )2
ab 1-8 b ab
(1-8)0b+ 52 +
(ti+ a) [r it —( )]
"A
where r "4 Generally only a few iterations are required to obtain r
B
starting from a reasonable ''guess" for T, The estimator and its variance

are not sensitivity to deviations from L, (optimum) of 10 percent or less.

An estimator of the optimum p(i.e. po) from the sample data 1is:

N.n N
Aa - B - -
n2 ya + n2 (yab-yb)
; - _A B
(N B“b y
2 2
A Py

But p is now a function of several sample statistics which disturbs the
unbiasedness of the estimator. However, the degree of bias is considered

to be negligible. An alternative estimator of p is available, but re-
quires the pafameter o: R o:b and o: « This is the bi-quadratic solution

given by Hartley.
7.1.5 Assumption of Equality Means for "Overlap" Domains

In practice, we face the problem of pooling of independent estimates
of the parameter Yab or ?ab from different frames. Each estimate is given
with {ts sample size and estimated standard error. Can the estimates be
considered as homogeneous? That is, are they estimating the same quantity?

Let n = n1+...+nK equal the samples corresponding to each frame and denote

by '1 the ratio ni/n. The asymptotic distribution of Y n, n (T 1) is
N[0,52(0,)].
i1 2
n, (T -9) K n (T, 9)
Consider, H = Z -—??—————— = nl -_?T-—-———

54(1,) (T,
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vwhere T, is the estimate of the parameter © from the ith frame, and ©

is givei by
K
é ] sztiTi \ § _511_—
§,(T) ST
2

H is distributed as x” with (K - 1) degrees of freedom as n+= ,

7.1.6 The Special Case of Frame A With 100 Percent Coverage

I1f Frame A is conplete (covers all the units in the population)

then N, = N, N =N, ¥ =N, - Ng, N =0

so we are ir case 2. Since Na = NA - NB > 0, Frame B must have fewer
units than Frame A.

7.1.7 Different Units in Frames With Overlanpine Characteristics

In this case, the elementary units which make up the frame are
different. Consider a survey in a city to estimate the total cost
expanded on the laundering of clothes; both private households and
commercial laundries will have launder items which we refer to as
"clothes." A portion of "clothes" belonging to a household may be sent
to a laundry and the rest washed in the home. A commercial laundry han-
dles clothes from households and from some "cormercial nstitutions"
which send all their laundry out. That is, the characteristic pertaining
to the elementary unit is partitioned rather than assigning the unit to
either domain a, ab, or b. The three domains are: (1) houseﬁold clothes
laundered in the home, (2) household clothes laundered in commercial
laundries, and (3) commercial institution clothes laundered in cormercial
laundries. The characteristic of interest might be dollars spent or
pounds of clothes, or both,

For each frame the characteristic of interest is defined as follows:

’

Yy if the clothes in the ith home are laundered

in the home (jth donain = a)
Frame A nyi = ﬁ th
Py if the clothes in the i~ home laundered in

L a cormercial laundry (i.e., jth domain = ab)

( yg if clothes in the K™ commerical laundry are

from commercial institutions (jth domain = b)

Frame B ij th
Yy if clothes in the K* commercial laundry are

P L from a home (jth domain = ab)
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The unbiased estimate of the population total is given by

N n n N n n
s a [.A A B B B
Y= ;—'{ani + pZabyi} + ;; {IbyK + quayK}
A
2 2
- N n N n

v(Y) = ;A a- ié) s2 4 ;E a- ig) s?

A A Y1 B B 37K

and the sample estimator of the variance is a copy of V(Q).

Another example might be the total costs of veterinary drugs pur-
chased. Drugs are used by farm operators, and institutional farms as
well as by licensed veterinarians. Additional frames might need to be
considered if costs for nonfarm purchases of veterinary drugs for home
pets, riding stables etc., were to be included.

Surveys With More Than Two Frames

The concepts for two frames can be extended to K-frames., In this

section, the methodology 1s described for K = 3. The number of domains

created by K-frames is 2K - 1or 23

- 1= 7 for three frames. We con-
sider simple random sampling from the three frames. It is necessary to
directly estimate only the number of units in the four "overlap domains;"
that 1is; Nab' Nac' Nbc and Nabc’ In many of the applications to date,
the main interest has centered on estimating the population size.
Examples are the number of animals in a population, the number of housing
starts in a month or year, etc. In this latter case, the frames might
conceivably be: (1) New applications for gas, (2) new applications for
electricity, and (3) building permits issued.

7.2.1 Three Frame Estimators

Using the obvious extension of the notation and procedures of the

two frame case, the following estimates of domain sizes are:

Neb = Pap n, Mab * 9%, o "a’

’
=z

n
ac ac ca

)

be - Pben, ™c T %ew "cb ?



where the variances are:

and

N2 N2
- 2 A 2 B
V(Nab) - pab ;; ul(l-al) + qab o 02 (1 - az)
o olab o Nap
» 9
1N, 2 B
2
v<§)-2ﬁ-<1-)2§3(1 )
ac pac nA Y1 Y1 qac M Y2 Y2
N N
Y TR e Yy s
17N, 2N
V(ﬁ)-P2§B(1-8)+2§—:-8(1-8)
be be ny ©1 1 qbcncz 2
B-—N——b-—c- B..N_bf-a
1N, * P2%x ¢
B c
2
V(N )_PZ_N_:_ 6(1—6)+P2N—1215(1-6)+P2§-c-6(1-
abe An 1 1 B nB 2 2 Cn 3
A c
8 Nabc 8 abe s abe
1 N, * %2""n, * °3 N. °
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The values of the »'s that minimize these variances are:

VN, )
ba
P = = ~ q =1-P
ab ’ ab ab
V(Nab) + V(Nba)
VN )
Pac - - = - v 9 7 1- Pac
V(Nac) + V(Nca)
VN L)
Pbc - " < - » Ape © 1- Pbc
V(Nbc) + V(Ncb)
1
P = v(Nabc)
A 1

cab
1
P = v(Nbac)
B 1 + 1 + 1
v(Nabc) v(Nbac) V(Ncab)
1
P = V(Ncab)
C ‘1 + .1 + ‘1
vmabc) V(Nbac) V(Ncab)

and the variance of Na (similarly Nb and Nc) by:

V(N)-iqz{Pzm(l-m)+1’z (- )+P26(1-6)-
N ab N1 1 ac M1 Y1 A 1

2P b Pac 0¥y~ Py Py 48y - 2P, Py Yyé

1

} +
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N: 2

* g {agy 31 = ay) + Py 8,(1 = 8)) = 2 Ppq, ad,}
“czz 2 2

*ac U Gac Y2l T Y +Pp 831 =8 - 2P e, vply )

For a characteristic other than the population size, such as value of
housing starts, the mean of the characteristic for each domain would
need to be determined.

For the total of the domain ab, we have

a ~

2 2 n ; + n ;
Y = N Y where Y = ab _ab a__ba
ab ab ab ab n, + nb
ab a

and in a similar manner the totals for the other six domains can be
obtained.
Hence, for Y we obtain

= Ya + Yb + Yc + Yab + ch + Yac + Yabc .

The variance of Yab can be obtained as the variance of a product of
two independent quantities Nab and ;ab' Hence, the variance of Y can
. be obtained as a sum of the seven variances and their covariances of

the linear estimator.
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Chapter VIII., Sample Size and Allocation for Surveys

8.0 Introduction

The first question which a statistician is frequently called upon
to ansver is about the size of the sample. Before this question can be
answered, the purpose of the survey, variances, costs, and the desired
precision of the estimates of the population parameters must be specified.

The purpose (or purposes) of the survey can have a profound effect
on how the sample size question is answered. Most persors who ask the
question about sample size cannot be expected to realize the answer
will be different depending on the main purpose of the survey. If the
main purpose of the survey 1s to estimate a population parameter with
a specified precision, we have the classical problem which all sampling
books answer. However, the answer is different when the main purpose
of the survey is to compare returns per acre or per establishment for
irrigated lands versus non-irrigated lands, or for the yield of a fruit
crop grown on the mountain slopes versus fruit grown on the valley
floor. The answer to this latter type problem is found in books on
experimental design and in some of the newer books on sampling under
the topic of analytic surveys or ''domain estimation.”

The availability of data on costs and variances is necessary if
the sample size is to be determined accurately based on sampling theory.
Where such data is not available, a preliminary sample is generally
recommended for improving the design of the survey vhen it is important
to achieve the desired precision.

The specification of the desired precision is arbitrary since there
is generally no means of determining a loss function based on the magni-
tude of the survey error. However, frequently the choice of estimator
used in estimating the population parameters is overlooked in determin-
ing the sanple size. There are many situations in which the estimator
is very important, and the opportunity for consideration of this factor
should always be investigated when a preliminarv sample is required to
obtain estimates of variances and costs.

In the discussion which follows the main emphasis is on the
classical sample size problem where the population parameters are to

be estimated with a specified precision.
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8.1 Single Stage Sample Surveys

The number of population parameters to be estimated determines the
ease with which the sample size can be determined. Initially, the
precision is usually specified in terms of the margin of error per-
missible in the estimate of a single survey parameter and the coefficient
of confidence with which one wants to make sure that the estimate is
within the permissible margin of error. The confidence interval state-
ment for the mean of a quantitative variable is given by the following

form:

N-n

- N-n < -
- Yn + t(cx,w) Nn

<
Va2~ Yoy N2 © -

Y o

where t(a ) is the value of the normal variate corresponding to the
1

value 1 - %- of the tabled normal probability integral N(0,1), to hold

on the average of the mean with a probability 1 - a. From this statement

we can find the sample size "n"

¢2 2
(a,®) . o~
2 32
n-
L a2
[}
l+3—=2— =2
E Y

vhere o/Y is the population coefficient of variation and E is the mar-
gin of error specified as a fraction of the mean. Even when o/Y is
to be used

known, n is underestimated since t is less than t

(G '°°) (O ’n—l)
in calculating the sample confidence interval. This can be corrected
2 2
by increasing the calculated "n" by the ratio t (a,n-l)/t (a,) The

correction is not likely to be important unless '"n'" is small.
When ¢ is unknown and the margin of error is specified as E-?, a

preliminary sample of size n, for improving the design of the survey is

1
selected and the total sample size n is calculated from the pilot survey

> t2 32
(a,nl—l) 1

n=
E2?2
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vhere si is the variance calculated from the n1 units and N is assumed

to be large. The additional units required to give the desired
accuracy 1is n-n, .
The size of sample required for estimating a population proportion
with a specified precision is
2
(o,

EZP

n=

where P is the population proportion while q = 1-P and E*P is the
error permissible when the degree of assurance is 1 - a; N is assumed
large and E not too small. The knowledge of P is not as critical here
since the sample size may be determined for a range of P values and
the largest value of "n" used.

When the number of parameters being estimated is two or wmore, the
sample size needs to be determined for each according to the methods
jJust described. The survey characteristic which requires the largest
"n" determines the sample size needed to meet the specified margins of
error for all variables,

It will be noted that costs did not directly enter into any of

the equations. Where the total survey costs are C = o + <M and

the maximum dollars available CH is less than C, either the sample
size will need to be reduced or the margin of error will need to be
increased. If the sample size is to be reduced so the dollars spent

will be CM’ then the calculated n will be reduced by the ratio:

Gy <o

C~-c

r =
0

where Co is the overhead cost for the survey and C1 is the cost incurred
in acquiring the information for a selected unit.

1f it is planned to compare means of certain subdivisions for the
population, a larger sample size will be required. We specify the

magnitude of the difference in two means we wish to detect as D,
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To satisfy this requirement, the pair with the largest sample size

is used:
2 2 2
. t(ue 01 ]
n= max-—~—’-—l (— + —J) If 6, and o0, are not very different, we
1, D2 L "j i h

replace them by a pooled estimate 02 and

2
t
n & max ____,___(uzw) (%—- + ;']"——)o2
i,3 D i 3
where LA and ﬂj are the fraction of the population units in the ith and

jth domains.

¥hen the K domains are of equal size

2Kt2 2

n & (a,»)g

DZ

Stratified Sample Surveys
In stratified sampling the population of N units is divided into

nonoverlapping subpopulations of Nl.NZ....NH units where N1+N2+...+NH = N,

These subpopulations are called strata and all must be represented in
any sample which is to be representative of the population. consequently,

the sample size for each of the strata n, and the total sample size

H

Inh = n are to be determined. We wish to do this in such a way as to

either minimize the variance to be used in the confidence interval for

h

a specified cost or to minimize the cost for a specified margin of error.
This problem is answered first for a single variable and then for two or
more characteristics.

8.2.1 Univariate or Single Parameter Allocation

The cost function most frequently used is

H

Cost = C0 + EChnh .

where C0 is the overhead cost and Ch the cost incurred in acquiring the

information for a selected unit in the hth strata. First, we seek to

mininize the variance of the mean



2
HN o N -
- h2 °h ,h Th
V@) = Iz — ()
N nh Nh

subject to the restriction

C,n, + C.n, +...+ C“nH = C -~ C. = Fixed Cost

11 22 0

Using the calculus method of Lagrange multiplier or the Cauchy-Schwarz
inequality, we can obtain a solution for single stage designs within
strata. For more complex designs within strata the C-S method cannot
be used.

8.2.2 Cauchy-Schwarz Inequalities

These are frequently used in determining optimum allocations and
making efficliency comparisons.
n 2< 22 "o
(1) (Ixiyi) - (in)(zyi) where Xy and y; are any two sets of
real numbers. The equality holds if and only if x, = Kyi.
(2) A generalization of C-S

Let y and V be n-vectors of real numbers, then

(u'V)2 s ﬁnﬁm)(V‘M-IV) where the matrix M is positive definite
and has an inverse. The equality holds if and only if Mp is proportional
to V.

(3) Probabilistic Version of C-S

Let 4 and V be two random variables, then

Ean 12 S Ewd).EvD) .

The equality holds if and only if u = KV with probability one.
8.2.3 Application of C-S to Optinum Allocation

The variance formula for the population total can be written as

2.2

N, S
" 2 .2 .1 1 h™h 2
v(Y) ZNh Sh ( ﬁ—) z -1 NhSh

b " ™ h h ™  n

where the second term on the far right does not involve n Hence, the

h.
variance 1s composed of a constant and a term involving n which we

wish to find an optimum solution for based on some criterion.



(A) Minimum Variance for Fixed Cost
Using (1) of 8.2.2 and

Nhsh Jo o
letting xi " — yi - c:hn.h we have
"
2.2
N S NS
h™h 2 < h™h
C— . /en) = (= ec.n)
h h"h p m o p “h'h
The minimum will be achieved when the equality holds or when ¢h™M is
stz N252

, or, C n = Az hh + Substituting this into the
h "

proportional to

preceding formula for Chnh we can verify the equality. Hence, we may

write the equality as

Nn2s2
2 hh
(NS VCH) =( —)(ZCn),
© Vh°h % RN h™h
or
2.2 2
. BiSh (N, S, /)
h ™ ichnh

To find the proportionality constant A, we use the cost constraint

(dollars available), or

ZChnh =C - C0 and substitute for n, in the equation above

ANhSh
involving A we have n -
/c
h
AN, S
Ic, hbh . ¢ C
h /Ch
Gives:
c-C
A = 0
zNhshJE;
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Hence, we obtain (ignoring f.p.c.)

. (Nhsh *.JE; )

and n = Znh -0 . (INS, + /C )

INS./C. hbD h ™ "n

h h"h "h

(B) Minimizing Cost for Fixed Variance
Proceeding as before, but A is now found by using the constraint

which fixed the variances as V

0
1 Nhsh
R='v—' I ——
0 h fCh
and
N L N
" < n Yo
(ﬁnhsh /E;)z
n= Enh = v (ignoring f.p.c.)
0

8.2.4 Application of Calculus to Optimum Allocation

The variance formula for the population mean can be used to obtain

the solution. We use the same cost function as before except we let

C1 =C - Co = I Chnh .
h
We consider a function based on variance and cost which is applicable to

any type of survey design
B =V(y) +uC

where u is some constant to be determined from the constraints used in

obtaining the optimum solution for n and n .
For a stratified random sample, the variance of ; and cost

2 2
0 - 1:<~-——)(——> S+ W (EGym)

"



N, Sh —— .2
@g=3I (—— - vucC n )" + terms not involving n
'/—— h

h N h

For fixed cost Cl’ the minimum value of @ is when the derivative is set

equal to zero, or solving

N. S
%ﬂ = 0 for nh, gives nh = h h .
™ Nv’uch
To find the exact value of the n o, ve calculate L under fixed cost
conditions H
Nhsh
C1 = L Ch
h NVHCh
and
N
A= @ BBy e
h
Hence
i} Nhsh C1
I N
N. S, v¥C
ch h™h "h
L N
h
and
c N
1 h oo,
n inh oy = . (ix 5,+/C,)
zﬁ-shch

For fixed variance, the proportionality constant u, considering the terms

in the variance not involving ns is:

N
1 h .2
Vo*nf\n Sh
i o= S
h
Xﬁ—shv‘ch
h
Hence Nh J—-
T — S V/C
nh_N.hsh ¢ & Th'Th
. N
N/C. 1 h .2
% R
h
and
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If the costs of obtaining information is constant across strata, i.e.

Ch = C, then we have the leyman allocation vhich under a fixed variance

constraint gives a total sample size

2‘2
=

2
Sh

ol o}

N
ho2
Vo * N °h

=

- L
h

In the event the calculated value(s) of some n, exceeds Nh’ we

h
selected all units in the strata and allocate the remaining sample units,

n - Nh , to the H - 1 strata using the allocation formula. However, the

fornula for the expected variance nust also be modified.
Multivariate Allocation

Uhile the problem of optimum allocation has a unique analytical solu-
tion which is easily obtained for a single parameter, the above approach
for surveys with two or more variables, i.e., the need to estimate two
or more paramneters, is not easily solved analytically. lowvever, several
"compromise solutions' have been suggested based on applying the optimum
allocation to individual survey parameters for which the individual sur-
vey parateters for which the individual n's (and nh*s) have been computed
based on the results discussed for a single survey parameter, i.e., mean
or total for a specific survey characteristic.

8.3.1 Some Approximate Solutions

(A) Use the optimum allocation for the individual survey characteris-
tic requiring the largest sample size. This method will almost
surely not satisfy the individual variance restrictions for all
the means unless there are only a few survey items., However,
this method does indicate a minimum value or lower bound for the
sample size n.

(B) For each strata, choose the maximum n, obtained from the optimum

allocation for each of the survey cha?acteristics (or the maxi-
mum Neyman allocation). This method will satisfy all the
individual fixcd variances restrictions for each mean. The

sum of the maximum nh's provides the maximum value or upper
bound for the sample size n. It is somewvhat larger than is

required.
7,
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(C) A third method 1is to calculate the percent n is of n for each
of the individual optimum allocations and then average the per-
centage allocation for each stratum. However, a problem still
remains in how to choose n. One procedure is to average the
minimum and maximum n obtained in (1) and (2). This method will
not necessarily satisfy all the variance restrictions on the
means, but will satisfy most of the restrictions. A second
procedure is to determine an average cost per sampling unit, 1i.e.,

Ch = E, and use a fixed cost C - C0 : C to deternine n. This

procedure will not satisfy all the variance restrictioms.

B.3.2 Iterative Solution for Optimum Allocation

While an analytical solution is not available, it is possible by
“trial and error" to find a solution for n which will satisfy the variance
restrictions at minimum costs. A mathematical programming technique for
convex functions will vield a solution since the cost and variance func-
tion satisfy the mathematical conditions. We formulate all restvictions
on the individual totals and any restrictions we may wish to impose on
the nh's. These restrictions would be as follows:

2 .2 1 1

v(Y,) = ::1 Ny Shy (-n;- E) <Yy

for each of the j characteristics in the survey, and for each strata

2 < < N, . The last requirement insures that all strata are to
™ "h

be represented and the mean and variance can be estimated. In addition,
it insures that the allocation to a stratum does not exceed Nh. We also

which to minimize the cost function (i.e., the objective function)

C - Co = i Chnh .

8.3.3 Formulation of Convex Programming Problem

The general convex programming problem may be described as: find
the vector X that will

maxinize g(X), subject to the

constraints fi(X) <0 1 =1, 2,...m
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where g(X) is concave and the fi(X) are convex, real-valued functions
of the n-vector X for all real X and the functions are differentable.
There is no loss of generality in describing the problem as a maximiza-
tion problem, since maximizing g(X) = ~h(X) is equivalent to minimizing
h{(X). In the current problem we wish to find the vector X, where X* =
(xl,xz,...xH) is the vector of sample sizes for the strata (i.e., n = xh)
that will, ninimize the cost

h(X) = C0 + C°X
or equivalently

maximize g(X) = ~h(X).

In addition, we must satisfy certain constraints

l

*
- vj : VJ j = l’ 2,...3, plus x:z

-

and

xtl:Nh i.l' 2,.0.“.

Where the strata cost per sampling unit are represented by the vector

%2 .2
= (—)" § are known constants determined

d” = (C N hj

1 C2""CH)' and aij

for cach characteristic and strata.

The above formulation results in a bounded convex feasible region;
the concave function g(X) is also bounded over the feasible region, if
fact g(X) < 0. Now the problem, in the form to which an algorithm of
Hartley and Hocking will apply is

maximize Xp+1

subject to fh(x) - -X, +2<0h=1,2,...H
f}H_h(X) = xh - Nh f 0 h - 1,2,.-.!1

Eouen ) = Xp4p — 8K = X, + Gy ﬁ CpXp 20

<03 =1,2,...7,

foney+1

- ohy_
(X) I % vj

h

and
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8.4 Multistage Sample Surveys

In the preceding sections, either single-stage sampling of the entire
population was employed or was assumed within each of the strata for which
an optimum allocation was sought. If the sample mean is estimated using a
two-stage design, the variance depends on the distribution of the sample
between the two stages. In the solutions for the preceding sections, if a
two-stage design had been employed, the number of second-stage units was
assumed to be known and fixed so the variance depended only on the number
of first-stage units to be selected. We now address ourselves to the prob-
lem of how to allocate our sample units between the first and second stage
units. To determine this allocation, we require detailed information on
variance components and costs.

The units of sampling at the first-stage are assumed to be clusters
of equal number of second-stage units(i.e., equal size clusters). The
procedure is easily generalized to three or more stages and termed multi-
stage sanpling. For two stages, the population is composed of N first
stage units each of which have M second stage units. Ve let n denote the
number of first-stage units in the sample and m the number of second-
stage units to be drawn from each selected first-étage unit. Further,
we suppose that the units at each stage are selected with equal prob-
ability. The survey cost and precision will depend on the choice of n
and m. If we use a simple cost function:

Cost = c,nm where c, is cost per secondary unit,

If total cost is fixed, say C,, then the variance upon replacing m by m =

c 0
E%h is
02 02 c.0
ERT R SROPR
wvhere °

og is the variance between first-stage units, and

o: is the mean square within first stage units.

This expression is a monotonic function of n that reaches a minimum when n
2"5 2°37

assunes the maximum value and m = 1 for (ob - ﬁ—)>0; and if (Ub - ﬁ—)<0

the variance is a minimum when n is a minimum given by n = C0/c2M (i.e.,

no subsampling).
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If we fix the variance desired as Vo, rather than the cost, we have

2
c

1 1, 2 1 l, "w

v0 (n - N) % + (m M) n
which give
2

1 1 2
cb + (m B M) 0w

ns= 02
b
Vo * %

If we substitute this value of n into our cost function, we obtain

02
02 -2 c 02
b M 2w
C= czm 02 + 02
b b
Votw Vo R
2 2
2 % 2 O
C attains a minimum when m = 1 for ob pl v > 0, or vhenmn = M for ob ¥ < 0,

Next, we examine a more general case based on the cost function

C= Cl n + ¢, nn where 3 and c, represent the respective costs of including

first and second stage units.

2
o

For (oz - #E) > 0, the optimum allocation give m as the pesitive

< o:
integer closest to P —— Y or
2 o
2 _ v
% T H
where p is the intra-class correlation within first-stage units.
2
2 %
For o0 WM < 0, the value of m for total fixed cost C0 > < + CZH,

m =M and n {s the greatest integer not exceedinp Co/(c1 + czM); if C0 <
< + CZM, m is the greatest integer ﬁot exceeding C0 B El and n is 1.
c
2
When the primary units vary in size, we have the followinsg costs (based

on an average cost per secondarv unit):
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N

n
C= Cln + C2 N z L and variance
i=]1
N M
- 1 1 2,1 i.,2 ,1 1 2
VG )= G- S+ I (D@ -g) S -
nm n N b N {=] M m, Mi i

We obtain a minimum variance for fixed costs, the number of secondary

units mi is the closest positive integer to

R B S T
i 26 ﬁi
where
N M
A = Sg - l: I :i Si is assumed
NM 1i=1 M

positive. Since m, depends on Si' some prior knowledge of S, is required.

i i

possible Si - M . Or, to reduce the

51 is frequently related to M {.

i.
dependency of Si on Mi’ try to place first stage units with approximately

thesame;size into the same strata. Then m, = KM, where K may be approx-

i i
imated by .
~ C -~
K= R . 1 where E is an average Iintra-class
€ p

correlation over all units in the stratum.

In the preceding allocation problems, the calculus method of
Lagrange multiplier was not always demonstrated. However, this method
of minimizing a function @ by adding the cost function multiplied by a
proportionality factor y to the variance of the parameter being estimated
provides a general approach for problems of optimum allocation for a
single parameter.

The foregoing discussion was based on the assumption the necessary
information on costs and variances was available or could be obtained
in a pilot survey. Lacking this information, the experience in similar

surveys provides the best substitute. In other situations, the expertise
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of sampling people in the field can usually provide guidance for the
subject matter specialist in arriving at an approximate answer for
sample size and allocation. Some knowledge of the general nature of
the distribution of the characteristic(s) being estimated is helpful
since the mean, variance and range are frequently related to provide
a reasonable basis for variance estimation. Likewise, the nature of
the cost function may be obtained by having some knowledge of the

operating organization and physical dispersion of the universe and

frame being employed.
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